
Udon SDK Simple Examples

This directory contains some sample Udon programs in a scene to get you started. Open the 
scene ‘UdonExampleScene’ to explore.

There are four areas to explore – Prefabs, Cubes, Udon Variable Sync and PlayerDetection.

Prefabs

• VRCWorld has the typical components needed to upload your world, and it has a 
special UdonBehaviour on it with three public variables: jumpImpulse, walkSpeed, 
and runSpeed. Take a look at the graph to see how these variables are set for the 
local player on Start. That means you can set them in the inspector and they will be 
set for each player in your world when they join.

• The MirrorSystem is a group of a few assets set up to easily toggle a VRCMirror on 
and off. It has two child objects – MirrorCanvas, which is a World Space UI Canvas 
with a UIToggle, and the VRCMirror prefab, with no special changes made. Take a 
look at the UdonBehaviour on the MirrorSystem object. This is program is called 
ToggleGameObject, and it can be used to turn any GameObject on and off. It has a 
public variable for a targetGameObject – this is set to VRCMirror for the example, but
you could easily drop another GameObject in its place. When this program received a 
CustomEvent called “Toggle”, it will check whether the targetGameObject is currently
active and sends this value through ‘Op Unary Negation’, which just flips the value to 
its opposite. So a value of true becomes false and vice versa. Then this new flipped 
value is used to set the new value of the GameObject, flipping its Active state each 
time the Toggle event is received. How does the UIToggle fire this ‘Toggle’ event? Take 
a look at the UIToggle under MirrorSystem>MirrorCanvas>MirrorToggle. This is a 
standard UIToggle component, with an event wired up – under OnValueChanged, 
we’ve added an Action to target the MirrorSystem’s UdonBehaviour and fire its 
SendCustomEvent method with the string ‘Toggle’. The final important detail is that the 
MirrorCanvas object has a VRCUIShape component attached. This tells VRChat to 
enable Interaction with all UI items on this canvas.

• The AvatarPedestal is a simple working avatar pedestal. You’ll have to do a ‘Build and
Test’ in the VRChat SDK window under ‘Builder’ in order to see it working. The prefab 
itself is a cube with a VRC Avatar Pedestal component with a public Blueprint Id set, 
and ‘Change Avatars On Use’ turned on. There is an UdonBehaviour on this object, 
open it up to see how the behaviour listens for an ‘Interact’ event, then uses 
GetComponent to fire the SetAvatarUse command for the Local Player.



• To activate the Station, you’ll need to Build and test, and then walk your avatar to the 
chair object and Interact with it (typically your Trigger or Left Mouse button). This has
a very simple UseStationOnInteract program that gets the local player object and 
calls Use Attached Station.

Cubes

• The On Mouse Down cube will switch between 3 materials when you click on it in the 
editor. Take a look at its two attached UdonBehaviours: SendEventOnMouseDown 
and ChangeMaterialOnEvent.

• The Timer cube automatically changes between its 3 materials based on a duration 
variable you can change in the inspector before you hit play. It does this with two 
UdonBehaviours: SendEventOnTimer and ChangeMaterialOnEvent (the same exact
script as on the On Mouse Down cube).

• The Click for Loops cube will change its text to read something like ‘loops:012345678’. 
It does this by running a loop X number of times and adding to the UI Text Field. It’s got
a SendEventOnMouseDown UdonBehaviour just like the first cube, but it points to 
another component. Click on the target public variable on this UdonBehaviour to 
highlight the Text field that is being changed. Click on this text field and you’ll see a 
SimpleForLoop UdonBehaviour. You can change the numberOfLoops variable 
before running the scene to change the text it creates.

You’ll need to Build & Test a local version of the scene so it can run in the VRChat Client in 
order to test the next group:

• To swap the materials on the Interact Cube, walk your avatar to it and Interact. You 
may have guessed – a ChangeMaterialOnEvent for the effect, and a 
SendEventOnInteract as a trigger.

• You can also walk over to the On Pickup Cube and press your pickup button (typically 
your Grab or Left Mouse button). Once your avatar is holding it, you can Interact with 
it to change its color. Take a look at the PickupAndUse program on the cube. It 
changes the color of the material instead of swapping it out entirely.

Udon Variable Sync
This area shows Sync working within VRChat in a few different ways. You’ll need to run 
Build&Test with at least 2 clients to see this working – this opens up two instances of the 
VRChat world on your computer so you can test it. Make sure you to open the VRChat 
SDK Window, switch to ‘Settings’, and set the VRChat Client path to the actual location of 



your VRChat installation. It’s probably something like 
‘C:/SteamLibrary/steamapps/common/VRChat/VRChat.exe’.

• If you create the world, you will be the Owner of all the objects in the world, and you
will have control over the UIButton Owner on the left. Every time you Interact with 
this button, its counter will increase for everyone in the room. Only you can push 
this button, unless you leave the room – which gives someone else ownership of all
the objects. Take a look at the button in the hierarchy under 
Canvas/Panel/ButtonSyncOwner. Its OnClick event has been wired to the attached 
UdonBehaviour to fire a custom event also called OnClick. This doesn’t happen 
automatically, you have to wire it up yourself. Note that you don’t have to call the 
CustomEvent this name, as long as you use the same string in the UI Event as you 
do for the CustomEvent. Next, take a look at the Udon Graph to see how the 
clickCount is stored on the object and set from the event OnDeserialization. This 
event is called on the other people in the room when the variable is updated. The 
event is not called for the player who set the variable, so we wire the flow that 
comes out of SetVariable into the Text.SetText node so that changing the variable 
changes the Text for the Owner of the button as well.

• The UIButton Anyone on the right can be pushed by anyone in the room! All over 
the other UI items will only update when the Owner presses them. Upon interaction,
that user becomes the owner of the button, which lets their instance become the 
source of truth for how many button clicks should be displayed. Take a look at the 
Udon Graph on this object to see how everything works. This graph does three 
things in a specific order:
◦ When the Interact event fires, it sets the Owner of the Button to the local player 

– the one who triggered this event, and then updates the Text for this new 
Owner.

◦ After the owner is set, it can set the clickCount variable. There is a known bug 
where this doesn’t work right away, so a new Owner will only have their clicks 
counted starting on the second click. This will be fixed soon.

◦ Finally, with the OnDeserialization event, the Button’s uiText label is updated 
with the new count. This will happen for each player who is not the owner of the 
object.

• The UISlider can be controlled by the Owner – just aim and interact to change the 
value and it will sync its value to the other players in the room. This Udon Graph is 
very similar to the UIButton Owner and the rest of the UI examples in the scene. It 
uses public variables to wire up the UI and listens to the slider’s OnValueChanged 
to fire a Custom Event also called OnValueChanged. This prompts the graph to 
save the current value of the slider to a synced variable, which is picked up by the 



other players OnDeserialization. It also updates its own text readout using this 
value.

• The UIToggle is one of the simplest examples, following our familiar formula – fire 
a custom OnValueChanged event from a UI Element’s OnValueChanged event, 
update a synced variable, and update its own state from the synced variable.

• The UIDropdown works the same way as the above UI elements.

• The UITextField works very similar to the above elements. Note that you have the 
choice between subscribing to OnValueChanged or OnEndEdit. This example 
uses OnValueChanged to send updates more frequently, the other option would 
wait until an ‘enter’ command is made.

• The PickupCube on the left can be picked up by anyone in the room. Once it is 
picked up, it will change its color, and that new color will be synced to everyone 
else in the room. Take a look inside the attached UdonProgram, and notice that the 
Color data is synced using smooth interpolation. This helps smooth out the data 
over the network. Try the other modes and see what changes. This program uses 
an Update event to run on every frame – but the first thing it does in the Block 
node is check whether this player is both the Owner of the object and whether the 
object Is Held. If either of these are false, the Branch after the Op Conditional 
And node will be false, and that will end this flow, skipping to the second flow of the
Block statement, which sets the color of the material for every player.

• The PickupSphere on the right can also be picked up by anyone. Its 
UdonBehaviour is empty! Instead of containing a program, it provides sync and 
ownership abilities just by using the checkboxes on the UdonBehaviour.

PlayerDetection
This area shows three different ways of detecting Collision events with the player.

• PlayerTrigger is the simplest and most common way, using a Trigger Collider. 
When the player steps into this collider, their name will be displayed in a Text field.
In this example, the PlayerTrigger GameObject has a Box Collider with ‘IsTrigger’ 
checked, and an UdonBehaviour with our graph. This graph has two events – an 
OnPlayerTriggerEnter and an OnPlayerTriggerExit. When the events are 
triggered, they have a reference to the VRCPlayerApi object that called them. 
From this object, we can Get the DisplayName of the player, format it to say 
{name} Entered or Exited, and then SetText on a Text field to update it.

• PlayerCollision shows how you can make a moving physics object cause a 



Collision Event when it collides with the player. There are two main parts to this 
sytem – the FireOnTrigger graph on the TriggerArea GameObject, and the 
Projectile graph on the Projectile object. The result of this system is when a player
steps into the TriggerArea, the Projectile is sent hurtling towards them. If it 
collides with them, it will vibrate their controllers and make their name appear in a 
Text field.

◦ The FireOnTrigger graph is a great one to understand and reuse – when a 
Player enters its Trigger Collider, it will send an event to a target 
UdonBehaviour. Since the eventName and target are public variables, they can 
be changed in the inspector to fire any event on any UdonBehaviour, like 
opening doors, playing sounds, triggering animations. It also uses Debug.Log 
to log into your console whenever the event is fired so you can troubleshoot 
issues more easily. You can disconnect the Debug.Log event once everything is 
working as you’d like.

◦ The Projectile graph is one of the more complex example graphs, but it’s got 
lots of great logic that you can learn and use in your other graphs.
▪ On Start, it saves the position of the object into a variable called 

originalPosition. We later use this to reset the position of the object.

▪ On Custom Event ‘Fire’, it does two things in order by using a Block node. 
• First, it triggers our Reset functionality, which is enclosed in a group for 

easier understanding. We fire the Projectile towards the player in order to
test Collisions, so we need to make sure that the projectile is ready to be 
fired before we send it off each time. The Reset group will Set the 
Position of the Rigidbody (the physics element that moves this object) to
the originalPosition that we saved at start. It will Set the Velocity and the
Angular Velocity of the Rigidbody to Zero – which stops it moving and 
spinning. Finally, it turns off the Constant Force component which will 
stop applying force to the Rigidbody.

• After everything in the Reset group above has run, our projectile should 
be sitting in its original position, ready to be fired again. To fire it, we turn 
on the Constant Force component, which applies forward motion. Since 
the player is standing roughly in front of it in order to trigger it, they’re 
probably in its path.

▪ On PlayerCollisionEnter, two main things happen – we write the Player’s 
DisplayName into the Text Field, and we Vibrate their hands if they’re using 
controllers with haptics, by sending PlayHapticEventInHand events to their 
left and right hands.



▪ On PlayerCollisionExit, we write the Player’s DisplayName into the text 
field and then call the Reset group. This way, the block should appear back 
in its original position once it’s done hitting the player. We don’t have to do 
this since we call Reset right before we fire, but gives a nicer visual to the 
Player, since they can see the projectile is ready to fire again right away.

• PlayerParticleCollision demonstrates how a ParticleSystem can trigger event 
when any of its particles collide with a player. It’s also got two parts to the system.
 
◦ The TriggerArea GameObject has a Box Collider with ‘IsTrigger’ turned on, and

an UdonBehaviour with a graph called SetActiveFromPlayerTrigger. This is 
another highly-reusable graph.When a player enters the Trigger Collider, the 
target GameObject will be set to active, and when they exit, the target will be set
to inactive. You can toggle any GameObject by setting the target of this graph in
the inspector! In this case, it will toggle the CollisionParticles GameObject.

◦ The CollisionParticles GameObject is inactive by default, so it starts in the ‘off’ 
state. It has a ParticleSystem component with the Collision module turned on, 
the Collision Type set to ‘World’, the Mode set to ‘3D’, and the 
SendCollisionMessages option set to ‘On’. It also has an UdonBehaviour with 
the OnPlayerParticleCollision event. This event is simpler than the others, it 
doesn’t have Enter, Stay and Exit, but rather just a single event that is called 
when a particle collides with a player. For our example, we Set the Text on the 
textField variable to have the displayName of the player, as well as the time that
the collision occurred so we can more easily see multiple collisions happening.


